Machine Learning: Nearest Neighbors

ROB 102: Introduction to AI & Programming

Lecture 11

2021/11/22

Last time...

Image classification is a type of **supervised learning** where we predict the class of an image using labelled data.

Machine Learning Algorithm:

Training time:

Learn a prediction model by optimizing over a labelled dataset. Testing time:

Use the model to perform prediction on new data.

Data Split:

Training set: Labelled data used for training a machine learning algorithm. Test set: Data used to test the accuracy of the machine learning algorithm.

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from the MNIST dataset.

- 1. Nearest neighbors
- 2. Linear Classifier
- 3. Neural Network

The assignment instructions are available! <u>https://robotics102.github.io/projects/a4</u>

Menu HOME \sim COURSE INFORMATION \sim PROJECTS PROJECT 0: INTRO TO C++ PROJECT 1: WALL FOLLOWING PROJECT 2: POTENTIAL FIELD CONTROL PROJECT 3: PATH PLANNING PROJECT 4: MACHINE LEARNING TUTORIALS **Course Times** Lectures and labs

MW 10-11:30 AM @ GFL 107

<u>.</u>

≡

ROB 102: Introduction to AI and Programming

0

Project 4: Machine Learning for Image

Classification

Due December 10th, 2021 at 11:59 PM.

In this project, we will use machine learning algorithms to perform **image classification**. Image classification is the task of predicting the class, or label, of an image out of a set of known images. This is a type of *supervised learning*, which refers to algorithms that learn a function from labelled datasets.

We will be writing algorithms to do image classification on the <u>MNIST</u> dataset. MNIST consists of tiny 28×28 pixel images of handwritten digits from 0 to 9. A few example images from each are shown below.

The template code is available! Use the Github Classroom link to join.

Search or jump to	Pull requests Issues Marketplace	e Explore	4 + • 🐠 •
a robotics102 / machine-lea	rning Private template	 Unwatc 	h \checkmark 4 \overleftrightarrow Star 0 $\overset{\circ \circ}{\underset{0}{\overset{\circ}{}}}$ Fork 0
<> Code ⊙ Issues 1,1 Pull re	quests 🕑 Actions 🔟 Projects 🕕	Security 🗠 Insights 🕸 Setting	S
	gs Go to file Add file ▼	Code 👻 Use this template	About හි
janapavlasek Add the project page	e link to the readme	c0d5e01 3 days ago 🔞 6 commits	Template code for ROB 102 Project 4: Machine Learning.
🗋 .gitignore	Initialize template files	18 days ago	Readme
🗅 README.md	Add the project page link to the readme	3 days ago	
🗋 linear_classifier.ipynb	Add tests and documentation	3 days ago	Releases
nearest_neighbors.ipynb	Add tests and documentation	3 days ago	No releases published Create a new release
🗅 two_layer_neural_net.ipynb	Add tests and documentation	3 days ago	
			Packages

README.md

Template code for ROR 102 Project 1. Machine Learning in Julia. See the project description at

No packages published Publish your first package

0

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from the MNIST dataset.

- 1. Nearest neighbors (Today!)
- 2. Linear Classifier
- 3. Neural Network

Image Classification on MNIST

Imagine we have 60k labelled images. How can we predict the class of a new image?

Image Classification on MNIST

Imagine we have 60k labelled images. How can we predict the class of a new image?

Idea: This image of a two might be *numerically close* to other images of twos.

Idea: Given a new image, find the closest image in the training set. Then, assign the same label to the new image.

Nearest Neighbors: Project 4.1

In Project 4 (Part 1), you will implement an algorithm to classify images using Nearest Neighbors.

num viz = 10 JUpyter nearest neighbors Last Checkpoint: 5 hours ago (autosaved) File Edit View Insert Cell Kernel Help B Run ₩ Code ✓ === img = idx[i] end Part I: Nearest Neighbors This notebook implements a nearest neighbors classifier. Imports Some imports we'll need. using MLDatasets In [2]: using Plots 2 using Images using MosaicViews 5 using LinearAlgebra Out[36] using Random 6 7 using Printf

```
idx = shuffle(1:N_test)[1:num_viz]
nearest = x_train[indices[idx], :, :]
imgs = [x_test[idx, :, :]; nearest]
```

```
# imgs = reshape(imgs', width, height, num_viz * 2)
imgs = MNIST.convert2image(permutedims(imgs, (2, 3, 1)))
```

```
for i in 1:num_viz
img = idx[i]
@printf("Img %-2d -> Predicted: %-10s True: %s\n", i, y_pred[img], y_test[img])
end
```

```
println("\nTop row = test image, bottom row = nearest neighbor.")
mosaicview(imgs, fillvalue=1, nrow=2, npad=3, rowmajor=true)
```

Img 1	-> Predicted:	8	True: 3
Img 2	-> Predicted:	8	True: 8
Img 3	-> Predicted:	4	True: 4
Img 4	-> Predicted:	0	True: 0
Img 5	-> Predicted:	8	True: 8
Img 6	-> Predicted:	9	True: 9
Img 7	-> Predicted:	4	True: 4
Img 8	-> Predicted:	2	True: 8
Img 9	-> Predicted:	1	True: 1
Img 10	-> Predicted:	3	True: 3

```
Top row = test image, bottom row = nearest neighbor.
```


Idea: Given a new image, find the closest image in the training set. Then, assign the same label to the new image.

What does "nearest" mean?

distance(ス, ユ)

Euclidean Distance

Recall: The Pythagorean Theorem gives us the distance:

Euclidean Distance

Recall: The Pythagorean Theorem gives us the distance:

In 3D:

$$d(p,q) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + (q_3 - p_3)^2}$$

distance

uistance

Euclidean Distance

Recall: The Pythagorean Theorem gives us the distance: In 3D:

$$d(p,q) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + (q_3 - p_3)^2}$$

In N-D: $d(p,q) = \sqrt{\sum_{i=1}^{N} (q_i - p_i)^2}$ $\oint = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_N - p_N)^2}$ distance

$$d(p,q) = \sqrt{\sum_{i=1}^{N} (q_i - p_i)^2}$$

Image B

-2

-1	0	0
2	-1	-1
-1	0	-1

$$d(p,q) = \sqrt{\sum_{i=1}^{N} (q_i - p_i)^2}$$

$$d(p,q) = \sqrt{\sum_{i=1}^{N} (q_i - p_i)^2}$$

$$d(p,q) = \sqrt{\sum_{i=1}^{N} (q_i - p_i)^2}$$

Images as Matrices

If we have many images, we will stack them up in a vector of matrices, or a 3D matrix of size NxWxH.

In Project 4, the data will be stored in matrices like these. This is a convenient representation, but we also like big matrices because computers are very good at dealing with them.

Back to the nearest neighbors algorithm. Say we have a matrix of N training images and a test image we want to classify.

Back to the nearest neighbors algorithm. Say we have a matrix of N training images and a test image we want to classify.

The smallest distance to the test image is given by:

minimum(distances)

Let's say the test image is closest to train image $X_{train}^{(7)}$. Then:

argmin(distances)=7

The function argmin gives the <u>argument</u> that <u>minimizes</u> distances. So, we can predict:

N

A small example:

27

Training time:

Save the data, (X_{train}, y_{train}) .

Testing time: Given N_{test} test images and N_{train} training images:

Training time:

Save the data, (X_{train}, y_{train}) .

Testing time: Given N_{test} test images and N_{train} training images:

Training time:

Save the data, (X_{train}, y_{train}) .

Testing time: Given N_{test} test images and N_{train} training images:

Calculate distance test image and each train image

```
for i = 1: N_{test} do:
                  distances = [0, ..., 0] (vector of length N_{train})
between current \int \text{for } j = 1: N_{train} \text{ do:}
                          distances[j] = distance(X_test[i], X_train[j])
                  nearest idx = argmin(distances)
                  y pred[i] = y train[nearest idx]
```

Training time:

Save the data, (X_{train}, y_{train}) .

Testing time: Given N_{test} test images and N_{train} training images:

```
for i = 1:N<sub>test</sub> do:
    distances = [0,...,0] (vector of length N<sub>train</sub>)
    for j = 1:N<sub>train</sub> do:
        distances[j] = distance(X_test[i], X_train[j])
    nearest_idx = argmin(distances) < Find the index of the
    y pred[i] = y train[nearest idx]
```

Training time:

Save the data, (X_{train}, y_{train}) .

Testing time: Given N_{test} test images and N_{train} training images:

```
for i = 1:N<sub>test</sub> do:
    distances = [0,...,0] (vector of length N<sub>train</sub>)
    for j = 1:N<sub>train</sub> do:
        distances[j] = distance(X_test[i], X_train[j])
        nearest_idx = argmin(distances)
        y_pred[i] = y_train[nearest_idx] 
Assign the nearest
        neighbor's label to the
        current test image
```

Exercise!

Test Image

Exercise: Classify this image using nearest neighbors

Exercise: Solution

distance(test, A) = $\sqrt{42}$ = 6.48 distance(test, B) = $\sqrt{73}$ = 8.54 distance(test, C) = $\sqrt{16}$ = 4

Exercise: Solution

Nearest Neighbor: Image C Predicted Label = 2

How do we evaluate our model?

Accuracy: Percentage of correct classifications made by the model.

Quick, easy to interpret measure of how good the prediction is. Doesn't show why / how we're failing.

Evaluation: Types of Error

Say we have a binary classification problem, where a data point can be classified as one of two options.

Ex: Cat detector (1 = cat, 0 = not cat)

Predicted as cats

Evaluation: Types of Error

Say we have a binary classification problem, where a data point can be classified as one of two options.

Ex: Cat detector (1 = cat, 0 = not cat)

True positive: Cat correctly classified as cat.
False positive: Non-cat incorrectly classified as cat.
True negative: Non-cat correctly classified as not cat.
False negative: Cat incorrectly classified as not cat.

Predicted as cats

Evaluation: Precision & Recall

Precision: How valid the results are.

 $precision = \frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false positives}}$

Recall: How complete the results are.

recall = $\frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false negatives}}$

Evaluation: Precision & Recall

Precision: Helpful when it's important to have few false positives.

• Ex: A search engine should not show any irrelevant results, but it's okay to miss some relevant ones.

Recall: Helpful when it's important to have few false negatives.

 Ex: If a cancer detection algorithm gives a false negative, that's VERY bad! If there are some false positives, that's not so bad.

The metric chosen depends on the application!

A heatmap of classification labels vs true labels.

For a perfect classifier, the confusion matrix looks like this.

Predicte	d		·`	e						
True labe	el 🔍	ane	~0°)						0.	N
label	Sire	N SUT	or of	ু কেঁ	dee	, 908	2 410 ⁶	b not	Shir	e ruce
airplane	100	0	0	0	0	0	0	0	0	0
automobile	0	100	0	0	0	0	0	0	0	0
bird	0	0	100	0	0	0	0	0	0	0
cat	0	0	0	100	0	0	0	0	0	0
deer	0	0	0	0	100	0	0	0	0	0
dog	0	0	0	0	0	100	0	0	0	0
frog	0	0	0	0	0	0	100	0	0	0
horse	0	0	0	0	0	0	0	100	0	0
ship	0	0	0	0	0	0	0	0	100	0
truck	0	0	0	0	0	0	0	0	0	100

A heatmap of classification labels vs true labels.

Predicte	d		Ś	e								
True labe	el ,	ane	NOD	•					0.	、	1	
label	Sirr	aut aut	ind is	کې ک	dee	2 908	» 410	b not	shir	2 ruc	*	
airplane	74	2	18	0	0	0	0	0	6	0	-	70
automobile	1	75	0	0	0	0	4	0	0	20		60
bird	15	0	67	0	7	0	9	0	2	0		00
cat	0	2	0	55	8	31	0	4	0	0		50
deer	0	2	0	10	49	20	1	18	0	0	-	40
dog	0	0	3	21	18	49	5	0	0	4		30
frog	0	0	0	0	12	13	68	7	0	0		50
horse	0	7	0	0	22	12	2	54	0	3		20
ship	16	4	7	0	0	3	0	0	64	6	-	10
truck	4	33	0	0	7	5	0	0	7	44		0

A heatmap of classification labels vs true labels.

airplanes classified as airplanes

Predicte	d	•		le.								
True labe))	ane	MOL			۲.			e		F	
label	Sint	aut aut	y vill	ځي `	dee	× 206	\$ 410°	b hor	Shir	2 run	`	
airplane	74	2	18	0	0	0	0	0	6	0	-	70
automobile	1	75	0	0	0	0	4	0	0	20		60
bird	15	0	67	0	7	0	9	0	2	0		00
cat	0	2	0	55	8	31	0	4	0	0	- !	50
deer	0	2	0	10	49	20	1	18	0	0		40
dog	0	0	3	21	18	49	5	0	0	4		30
frog	0	0	0	0	12	13	68	7	0	0		
horse	0	7	0	0	22	12	2	54	0	3	-2	20
ship	16	4	7	0	0	3	0	0	64	6	-:	10
truck	4	33	0	0	7	5	0	0	7	44		0

A heatmap of classification labels vs true labels.

airplanes classified as airplanes# airplanes classified as automobiles

Predicte	d		Ś	e								
True labe	el ,	ane	NOD						0.		1	
label	Sirr	aut of the second	or in	کې کې	dee	× 906	° 4106	b not	shir	^{عرري} ن	ţ	
airplane	74	2	18	0	0	0	0	0	6	0	- ;	70
automobile	1	75	0	0	0	0	4	0	0	20		60
bird	15	0	67	0	7	0	9	0	2	0		00
cat	0	2	0	55	8	31	0	4	0	0	-!	50
deer	0	2	0	10	49	20	1	18	0	0	- 4	40
dog	0	0	3	21	18	49	5	0	0	4		20
frog	0	0	0	0	12	13	68	7	0	0		50
horse	0	7	0	0	22	12	2	54	0	3	-2	20
ship	16	4	7	0	0	3	0	0	64	6	-1	10
truck	4	33	0	0	7	5	0	0	7	44		0

A heatmap of classification labels vs true labels.

airplanes classified as airplanes# airplanes classified as automobiles# airplanes classified as birds

Predicte	d			e								
True labe	el 🔍	ane	nob	•					0,	、	1	
label	Sill	aut aut	D. OH	े ्व	dee	× 208	2 K106	b not	Shir	2 vinc	5	
airplane	74	2	18	0	0	0	0	0	6	0	-	.70
automobile	1	75	0	0	0	0	4	0	0	20		60
bird	15	0	67	0	7	0	9	0	2	0		.00
cat	0	2	0	55	8	31	0	4	0	0		.50
deer	0	2	0	10	49	20	1	18	0	0	-	40
dog	0	0	3	21	18	49	5	0	0	4		20
frog	0	0	0	0	12	13	68	7	0	0		.20
horse	0	7	0	0	22	12	2	54	0	3		20
ship	16	4	7	0	0	3	0	0	64	6	-	-10
truck	4	33	0	0	7	5	0	0	7	44		-0

A heatmap of classification labels vs true labels.

airplanes classified as airplanes# airplanes classified as automobiles# airplanes classified as birdsetc...

Predicte	d		, i	e								
True labe	el N	ane	mol			c .			.0		F	
abel	SILC	" vit	, pill	ٽھن `	dee	, 90g	° 4109	6 hor	SUIL	2 TINC		
airplane	74	2	18	0	0	0	0	0	6	0		-70
automobile	1	75	0	0	0	0	4	0	0	20		-60
bird	15	0	67	0	7	0	9	0	2	0		-00
cat	0	2	0	55	8	31	0	4	0	0		-50
deer	0	2	0	10	49	20	1	18	0	0		-40
dog	0	0	3	21	18	49	5	0	0	4		- 30
frog	0	0	0	0	12	13	68	7	0	0		- 30
horse	0	7	0	0	22	12	2	54	0	3		-20
ship	16	4	7	0	0	3	0	0	64	6		-10
truck	4	33	0	0	7	5	0	0	7	44		L_0

A heatmap of classification labels vs true labels.

The confusion matrix gives us more insight about where the algorithm is failing.

Predicte	d	_	j,	e							
True labe	9	ane	mor			4			e.		F
label	Sirr	2 JUL	y viro	کم ک	dee	× 208	° 4109	s hou	Shir	2 xruc	`
airplane	74	2	18	0	0	0	0	0	6	0	- 70
automobile	1	75	0	0	0	0	4	0	0	20	-60
bird	15	0	67	0	7	0	9	0	2	0	
cat	0	2	0	55	8	31	0	4	0	0	-50
deer	0	2	0	10	49	20	1	18	0	0	- 40
dog	0	0	3	21	18	49	5	0	0	4	- 30
frog	0	0	0	0	12	13	68	7	0	0	
horse	0	7	0	0	22	12	2	54	0	3	-20
ship	16	4	7	0	0	3	0	0	64	6	-10
truck	4	33	0	0	7	5	0	0	7	44	

A heatmap of classification labels vs true labels.

The confusion matrix gives us more insight about where the algorithm is failing.

Airplanes are being misclassified as birds.

Predicte	اد ا	<u>.</u> e		ie.							
label	Sirr	ant aut	onothe	े ्र	dee	ix 906	5 410F	b not	se shir	R TUNG	F
airplane	74	2	18	0	0	0	0	0	6	0	- 70
automobile	1	75	0	0	0	0	4	0	0	20	-60
bird	15	0	67	0	7	0	9	0	2	0	-00
cat	0	2	0	55	8	31	0	4	0	0	-50
deer	0	2	0	10	49	20	1	18	0	0	- 40
dog	0	0	3	21	18	49	5	0	0	4	20
frog	0	0	0	0	12	13	68	7	0	0	-30
horse	0	7	0	0	22	12	2	54	0	3	-20
ship	16	4	7	0	0	3	0	0	64	6	-10
truck	4	33	0	0	7	5	0	0	7	44	

A heatmap of classification labels vs true labels.

The confusion matrix gives us more insight about where the algorithm is failing.

Deer are hard to classify. They are being labelled as dogs and horses.

Predicte	d		Ś	e								
True labe	el 🔍	ane	nob	•					0.	、	1	
abel	Sirr	aut aut	or in	کې کې	dee	× 208	2 410 ⁶	b not	Shir	e the	7	
airplane	74	2	18	0	0	0	0	0	6	0		-70
automobile	1	75	0	0	0	0	4	0	0	20		-60
bird	15	0	67	0	7	0	9	0	2	0		-00
cat	0	2	0	55	8	31	0	4	0	0		-50
deer	0	2	0	10	49	20	1	18	0	0		-40
dog	0	0	3	21	18	49	5	0	0	4		- 30
frog	0	0	0	0	12	13	68	7	0	0		-30
horse	0	7	0	0	22	12	2	54	0	3		-20
ship	16	4	7	0	0	3	0	0	64	6		-10
truck	4	33	0	0	7	5	0	0	7	44		L_0

To make our algorithm more robust, we can let the k nearest neighbors vote on the label for the test image. This is the "k" in k-nearest neighbors (kNN).

Up until now, we were describing 1-NN.

The decision boundaries for our data change. We are overfitting less.

Experiment with kNN here: http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

How do we pick k?

k is an example of a hyperparameter: a parameter we choose, which isn't learned.

Generally, we need to tune these parameters by trying different values and selecting the best performing ones.

Overfitting

Overfitting happens when we fit a model that corresponds too closely to our data. Overfitting impacts performance on new data.

Overfitting

Overfitting happens when we fit a model that corresponds too closely to our data. Overfitting impacts performance on new data.

Overfitting

Overfitting happens when we fit a model that corresponds too closely to our data. Overfitting impacts performance on new data.

Bias-Variance Tradeoff

Bias is error due to deviation from the true value (underfitting).

Variance is error due to sensitivity to variations in the data (overfitting).

When choosing hyperparameters, we need to tradeoff between both.

Idea #1: Choose hyperparameters that work best on the data

Bad idea 😕

Your Dataset

We are minimizing the **training error**. This is basically just "memorizing" the training data (overfitting!).

The training error should be low. Ex: For nearest neighbor, k=1 will give zero training error. Training error should only be used as a sanity check.

Idea #1: Choose hyperparameters that work best on the data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

We are minimizing the **testing error**.

This is better, but we still don't know how we'll do on new data.

train

Your Dataset

Better idea 🙂

Bad idea 😕

test

Idea #1: Choose hyperparameters that work best on the data

Idea #2: Split data into train and test, choose

hyperparameters that work best on test data

train test

Your Dataset

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

train validation test

Better idea 🙂

Bad idea 🛞

Good idea 😳

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

Best idea! 🙂

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but (unfortunately) not used too frequently in deep learning

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from the MNIST dataset.

1. Nearest neighbors (Today!)

- $\checkmark\,$ How to find the distance between images
- ✓ The nearest neighbors algorithm
- ✓ Evaluating classification algorithms
- ✓ Setting hyperparameters
- 2. Linear Classifier ← Next time!
- 3. Neural Network