
Machine Learning:
Nearest Neighbors
ROB 102: Introduction to AI & Programming

Lecture 11
2021/11/22

Last time…

Image classification is a type of supervised learning where we predict
the class of an image using labelled data.

2

? ? ? ? ? ?

Image: CC4.0 (link)

https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

Last time…

Machine Learning Algorithm:
Training time:

Learn a prediction model by optimizing over a labelled dataset.
Testing time:

Use the model to perform prediction on new data.

Data Split:
Training set: Labelled data used for training a machine learning algorithm.
Test set: Data used to test the accuracy of the machine learning algorithm.

3

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors
2. Linear Classifier
3. Neural Network

4

The assignment instructions are available!
https://robotics102.github.io/projects/a4

5

https://robotics102.github.io/projects/a4

The template code is available! Use the Github Classroom link to join.

6

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors (Today!)
2. Linear Classifier
3. Neural Network

7

Image Classification on MNIST

Imagine we have 60k labelled images. How can we predict the
class of a new image?

?

8

Image Classification on MNIST

Imagine we have 60k labelled images. How can we predict the
class of a new image?

?

Idea: This image of a two might be numerically close to other
images of twos.

9

Nearest Neighbors

Idea: Given a new image, find the closest image in the training
set. Then, assign the same label to the new image.

Test images

Nearest training
images

10

Nearest Neighbors: Project 4.1

In Project 4 (Part 1), you will implement an algorithm to
classify images using Nearest Neighbors.

11

Nearest Neighbors

Idea: Given a new image, find the closest image in the training
set. Then, assign the same label to the new image.

What does “nearest” mean?

distance(,)

12

Euclidean Distance

Recall: The Pythagorean Theorem gives us the distance:

In 2D:

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = 𝑞𝑞1 − 𝑝𝑝1 2 + 𝑞𝑞2 − 𝑝𝑝2 2

distance

13

Euclidean Distance

Recall: The Pythagorean Theorem gives us the distance:

In 3D:

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = 𝑞𝑞1 − 𝑝𝑝1 2 + 𝑞𝑞2 − 𝑝𝑝2 2 + 𝑞𝑞3 − 𝑝𝑝3 2

distance

14

Euclidean Distance

Recall: The Pythagorean Theorem gives us the distance:
In 3D:

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = 𝑞𝑞1 − 𝑝𝑝1 2 + 𝑞𝑞2 − 𝑝𝑝2 2 + 𝑞𝑞3 − 𝑝𝑝3 2

In N-D:

= 𝑞𝑞1 − 𝑝𝑝1 2 + 𝑞𝑞2 − 𝑝𝑝2 2 + ⋯+ 𝑞𝑞𝑁𝑁 − 𝑝𝑝𝑁𝑁 2

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = �
𝑖𝑖=1

𝑁𝑁

𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖 2

distance

15

Euclidean Distance: Example

-

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = �
𝑖𝑖=1

𝑁𝑁

𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖 2

-1 0 0
2 -1 -1
-1 0 -1

16

0 2 0
1 -2 2
1 1 3

Image A
-1 2 0
3 -3 1
0 1 2

Image B

Euclidean Distance: Example

-

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = �
𝑖𝑖=1

𝑁𝑁

𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖 2

-1 0 0
2 -1 -1
-1 0 -1

17

0 2 0
1 -2 2
1 1 3

Image A
-1 2 0
3 -3 1
0 1 2

Image B 2
1 0 0
4 1 1
1 0 1

Euclidean Distance: Example

-

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = �
𝑖𝑖=1

𝑁𝑁

𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖 2

-1 0 0
2 -1 -1
-1 0 -1

18

0 2 0
1 -2 2
1 1 3

Image A
-1 2 0
3 -3 1
0 1 2

Image B 2
1 0 0
4 1 1
1 0 1

∑

1 + 0 + 0 + 4 + 1 + 1 + 1 + 0 + 1 = 9

Euclidean Distance: Example

-

𝑑𝑑 𝑝𝑝, 𝑞𝑞 = �
𝑖𝑖=1

𝑁𝑁

𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖 2

-1 0 0
2 -1 -1
-1 0 -1

19

0 2 0
1 -2 2
1 1 3

Image A
-1 2 0
3 -3 1
0 1 2

Image B 2
1 0 0
4 1 1
1 0 1

∑

1 + 0 + 0 + 4 + 1 + 1 + 1 + 0 + 1 = 9 distance(A, B) = 9 = 3

Images as Matrices

If we have many images, we will stack them up in a vector of
matrices, or a 3D matrix of size NxWxH.

20

In Project 4, the data will be stored in matrices like these. This is a convenient representation, but
we also like big matrices because computers are very good at dealing with them.

Nearest Neighbors

Back to the nearest neighbors algorithm. Say we have a matrix of N
training images and a test image we want to classify.

⋮
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

𝑁𝑁𝑁𝑁

21

Nearest Neighbors

Back to the nearest neighbors algorithm. Say we have a matrix of N
training images and a test image we want to classify.

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑

⋮

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑵𝑵

distances

𝑁𝑁

22

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

𝑁𝑁

Nearest Neighbors

The smallest distance to the test image is given by:

minimum(distances)

Let’s say the test image is closest to train image
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

(7) . Then:

argmin(distances)=7

The function argmin gives the argument that
minimizes distances. So, we can predict:

𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 = 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡[7]

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑

⋮

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝑵𝑵

distances

𝑁𝑁

23

Nearest Neighbors

A small example:

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

1

3

3

2

3

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

?𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

Goal: Predict test
image label, 𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 24

Nearest Neighbors

A small example:

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

1

3

3

2

3

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

?𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

25

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟒𝟒

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟓𝟓

distances

Nearest Neighbors

A small example:

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

1

3

3

2

3

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

?𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

26

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏 = 2.1

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐 = 1.2

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑 = 2.8

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟒𝟒 = 0.7

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟓𝟓 = 1.3

distances

argmin(distances) = 4

minimum!

Nearest Neighbors

A small example:

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

1

3

3

2

3

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

?𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

27

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏 = 2.1

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐 = 1.2

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑 = 2.8

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟒𝟒 = 0.7

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟓𝟓 = 1.3

distances

argmin(distances) = 4

minimum!

Nearest
neighbor

Nearest Neighbors

A small example:

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

1

3

3

2

3

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

?𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

28

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟏𝟏 = 2.1

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐 = 1.2

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟑𝟑 = 2.8

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟒𝟒 = 0.7

𝒅𝒅 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟓𝟓 = 1.3

distances

argmin(distances) = 4

minimum!

2

Nearest Neighbors: Algorithm

Training time:
Save the data, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 .

Testing time: Given 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 test images and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 training images:
for i = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do:

distances = [0,…,0] (vector of length 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡)
for j = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 do:

distances[j] = distance(X_test[i], X_train[j])

nearest_idx = argmin(distances)

y_pred[i] = y_train[nearest_idx]

29

For each
test image

Nearest Neighbors: Algorithm

Training time:
Save the data, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 .

Testing time: Given 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 test images and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 training images:
for i = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do:

distances = [0,…,0] (vector of length 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡)
for j = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 do:

distances[j] = distance(X_test[i], X_train[j])

nearest_idx = argmin(distances)

y_pred[i] = y_train[nearest_idx]

30

Initialize distances
to zero

Nearest Neighbors: Algorithm

Training time:
Save the data, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 .

Testing time: Given 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 test images and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 training images:
for i = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do:

distances = [0,…,0] (vector of length 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡)
for j = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 do:

distances[j] = distance(X_test[i], X_train[j])

nearest_idx = argmin(distances)

y_pred[i] = y_train[nearest_idx]

31

Calculate distance
between current
test image and
each train image

Nearest Neighbors: Algorithm

Training time:
Save the data, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 .

Testing time: Given 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 test images and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 training images:
for i = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do:

distances = [0,…,0] (vector of length 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡)
for j = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 do:

distances[j] = distance(X_test[i], X_train[j])

nearest_idx = argmin(distances)

y_pred[i] = y_train[nearest_idx]

32

Find the index of the
nearest neighbor

Nearest Neighbors: Algorithm

Training time:
Save the data, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 .

Testing time: Given 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 test images and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 training images:
for i = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do:

distances = [0,…,0] (vector of length 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡)
for j = 1:𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 do:

distances[j] = distance(X_test[i], X_train[j])

nearest_idx = argmin(distances)

y_pred[i] = y_train[nearest_idx]

33

Assign the nearest
neighbor’s label to the
current test image

Exercise!

34

1 -4 2
0 1 0
-3 1 0

1 0 4
-2 1 0
3 -1 3

-1 0 2
-2 3 0
3 -1 1

0 1 0
2 -1 0
3 -1 1
Image A
label: 3

Image B
label: 1

Image C
label: 2

Test Image

Exercise: Classify this image
using nearest neighborsTraining data

Exercise: Solution

35

1 -4 2
0 1 0
-3 1 0

1 0 4
-2 1 0
3 -1 3

-1 0 2
-2 3 0
3 -1 1

0 1 0
2 -1 0
3 -1 1
Image A
label: 3

Image B
label: 1

Image C
label: 2

Test Image

distance(test, A) = 42 = 6.48

Training data

distance(test, B) = 73 = 8.54

distance(test, C) = 16 = 4

Exercise: Solution

36

1 -4 2
0 1 0
-3 1 0

1 0 4
-2 1 0
3 -1 3

-1 0 2
-2 3 0
3 -1 1

0 1 0
2 -1 0
3 -1 1
Image A
label: 3

Image B
label: 1

Image C
label: 2

Test Image

distance(test, A) = 42 = 6.48

Training data

distance(test, B) = 73 = 8.54

distance(test, C) = 𝟏𝟏𝟏𝟏 = 𝟒𝟒

Nearest Neighbor: Image C

Predicted Label = 2

How do we evaluate our model?

Accuracy: Percentage of correct classifications made by the model.

accuracy =
correct predictions

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Quick, easy to interpret measure of how good the prediction is. Doesn’t
show why / how we’re failing.

Total number of
data points tested

37

Evaluation: Types of Error

Say we have a binary classification problem,
where a data point can be classified as one of
two options.

Ex: Cat detector (1 = cat, 0 = not cat)

38

cats not cats

Predicted as cats

Evaluation: Types of Error

Say we have a binary classification problem,
where a data point can be classified as one of
two options.

Ex: Cat detector (1 = cat, 0 = not cat)

True positive: Cat correctly classified as cat.
False positive: Non-cat incorrectly classified as cat.
True negative: Non-cat correctly classified as not cat.
False negative: Cat incorrectly classified as not cat.

39

not catscats

Predicted as cats

Evaluation: Precision & Recall

Precision: How valid the results are.

precision =
true positives

true positives + # false positives

Recall: How complete the results are.

recall =
true positives

true positives + # false negatives

40

Evaluation: Precision & Recall

Precision: Helpful when it’s important to have
few false positives.

• Ex: A search engine should not show any irrelevant results,
but it’s okay to miss some relevant ones.

Recall: Helpful when it’s important to have few
false negatives.

• Ex: If a cancer detection algorithm gives a false negative,
that’s VERY bad! If there are some false positives, that’s not
so bad.

The metric chosen depends on the application!
41

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

For a perfect classifier, the
confusion matrix looks like this.

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

100 0 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0 0

0 0 100 0 0 0 0 0 0 0

0 0 0 100 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0

0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 0 100 0 0 0

0 0 0 0 0 0 0 100 0 0

0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 100

42

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

43

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

airplanes classified as airplanes

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

44

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

airplanes classified as airplanes
airplanes classified as automobiles

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

45

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

airplanes classified as airplanes
airplanes classified as automobiles

airplanes classified as birds

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

46

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

airplanes classified as airplanes
airplanes classified as automobiles

airplanes classified as birds
etc…

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

47

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

The confusion matrix gives us
more insight about where the
algorithm is failing.

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

48

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

The confusion matrix gives us
more insight about where the
algorithm is failing.

Airplanes are being misclassified
as birds.

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

49

Evaluation: Confusion Matrix

A heatmap of classification
labels vs true labels.

The confusion matrix gives us
more insight about where the
algorithm is failing.

Deer are hard to classify. They are
being labelled as dogs and horses.

True
label

Predicted
label

airplane
automobile

bird
cat

deer

horse

dog
frog

ship
truck

74 2 18 0 0 0 0 0 6 0

1 75 0 0 0 0 4 0 0 20

15 0 67 0 7 0 9 0 2 0

0 2 0 55 8 31 0 4 0 0

0 2 0 10 49 20 1 18 0 0

0 0 3 21 18 49 5 0 0 4

0 0 0 0 12 13 68 7 0 0

0 7 0 0 22 12 2 54 0 3

16 4 7 0 0 3 0 0 64 6

4 33 0 0 7 5 0 0 7 44

50

k-Nearest Neighbors

To make our algorithm more robust, we
can let the k nearest neighbors vote on
the label for the test image. This is the “k”
in k-nearest neighbors (kNN).

Up until now, we were describing 1-NN.

51

k-Nearest Neighbors

The decision boundaries for our data change. We are overfitting less.

Experiment with kNN here: http://vision.stanford.edu/teaching/cs231n-demos/knn/

52

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

How do we pick k?

k is an example of a hyperparameter: a parameter we choose, which
isn’t learned.

Generally, we need to tune these parameters by trying different values
and selecting the best performing ones.

53

Overfitting

Overfitting happens when we fit a model that corresponds too closely
to our data. Overfitting impacts performance on new data.

The blue line is a perfect fit
for the given data.

But it’s not a very good
choice of model.

Probably a bad
guess for this
data point

Image: CC 4.0 (link)
54

https://en.wikipedia.org/wiki/File:Overfitted_Data.png

Overfitting

Overfitting happens when we fit a model that corresponds too closely
to our data. Overfitting impacts performance on new data.

This linear fit is likely a
better choice.

Avoids overfitting.

A better
guess!

Image: CC 4.0 (link)
55

https://en.wikipedia.org/wiki/File:Overfitted_Data.png

Overfitting

Overfitting happens when we fit a model that corresponds too closely
to our data. Overfitting impacts performance on new data.

A classification example

Green line = overfitting
Black line = better!

Image: CC 4.0 (link)
Image: CC 4.0 (link)

56

https://en.wikipedia.org/wiki/File:Overfitting.svg
https://en.wikipedia.org/wiki/File:Overfitted_Data.png

Bias-Variance Tradeoff

Bias is error due to deviation from the
true value (underfitting).

Variance is error due to sensitivity to
variations in the data (overfitting).

When choosing hyperparameters, we
need to tradeoff between both.

57

Setting Hyperparameters

We are minimizing the training error. This is basically just
“memorizing” the training data (overfitting!).

The training error should be low. Ex: For nearest neighbor, k=1 will give
zero training error. Training error should only be used as a sanity check.

Credit: Justin Johnson, EECS 498 F20 (link)

Bad idea

58

https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Setting Hyperparameters

We are minimizing the testing error.

This is better, but we still don’t know how we’ll do on new data.

Credit: Justin Johnson, EECS 498 F20 (link)

Bad idea

Better idea

59

https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Setting Hyperparameters

Credit: Justin Johnson, EECS 498 F20 (link)

Bad idea

Good idea

Better idea

60

https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Setting Hyperparameters

Credit: Justin Johnson, EECS 498 F20 (link)

Best idea!

61

https://web.eecs.umich.edu/%7Ejustincj/teaching/eecs498/FA2020/

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from
the MNIST dataset.

1. Nearest neighbors (Today!)
 How to find the distance between images
 The nearest neighbors algorithm
 Evaluating classification algorithms
 Setting hyperparameters

2. Linear Classifier
3. Neural Network

62

Next time!

	Machine Learning: �Nearest Neighbors
	Last time…
	Last time…
	Project 4: Machine Learning
	The assignment instructions are available!�https://robotics102.github.io/projects/a4
	The template code is available! Use the Github Classroom link to join.
	Project 4: Machine Learning
	Image Classification on MNIST
	Image Classification on MNIST
	Nearest Neighbors
	Nearest Neighbors: Project 4.1
	Nearest Neighbors
	Euclidean Distance
	Euclidean Distance
	Euclidean Distance
	Euclidean Distance: Example
	Euclidean Distance: Example
	Euclidean Distance: Example
	Euclidean Distance: Example
	Images as Matrices
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors
	Nearest Neighbors: Algorithm
	Nearest Neighbors: Algorithm
	Nearest Neighbors: Algorithm
	Nearest Neighbors: Algorithm
	Nearest Neighbors: Algorithm
	Exercise!
	Exercise: Solution
	Exercise: Solution
	How do we evaluate our model?
	Evaluation: Types of Error
	Evaluation: Types of Error
	Evaluation: Precision & Recall
	Evaluation: Precision & Recall
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	Evaluation: Confusion Matrix
	k-Nearest Neighbors
	k-Nearest Neighbors
	Hyperparameters
	Overfitting
	Overfitting
	Overfitting
	Bias-Variance Tradeoff
	Setting Hyperparameters
	Setting Hyperparameters
	Setting Hyperparameters
	Setting Hyperparameters
	Project 4: Machine Learning

