Machine Learning & Image Classification

ROB 102: Introduction to AI & Programming

Lecture 10

2021/11/17

How can we make a robot see?

ROB 102 (Project 4): We will perform a **computer vision** task using **machine learning** algorithms.

Goal for ROB 102 Project 4: Perform **image classification** with machine learning algorithms.

Image: CC4.0 (link)

Machine Learning Terminology

Supervised Learning

Given input data X and labels for that data y, learn a function to perform prediction on new data:

f(X)=y.

Supervised Learning

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

Output: Scale T-shirt Steel drum Drumstick Mud turtle

Deng et al, 2009 Russakovsky et al. IJCV 2015

Unsupervised Learning

Given unlabeled data, learn a function over the input.

Reinforcement Learning

An agent learns a policy that maximizes a reward.

Beat the world Go champion in 2017.

Reinforcement Learning

Outperforming humans at Atari games

Agent57: Outperforming the human Atari benchmark. [Puigdomènech, 2020]

Machine Learning Terminology

Machine Learning Terminology

"shark"

"shark"

"shark"

"shark"

"shark"

"shark"

"shark"

"dog"

Image: WeRateDog

Solve the following equation:

$10230823.5849 \times 3729.2201 + 19420186 = ?$

Humans are very good at reasoning about images:

Computers are very good at doing arithmetic:

 $10230823.5849 \times 3729.2201 + 19420186 = ?$

Goal for ROB 102 Project 4: Perform **image classification** with machine learning algorithms.

Image: CC4.0 (link)

Goal for ROB 102 Project 4: Perform **image classification** with machine learning algorithms.

Skin Cancer Detection

Handwriting classification

Image Classification

Image Classification: A Building Block

Image *Recognition*

Image Segmentation

How does a computer process an image?

097	097	097	097	097	097	097	097	096	097	097	096	096	096
100	100	100	100	100	100	101	101	102	101	100	100	100	099
105	105	105	105	105	105	105	103	102	102	101	103	104	105
109	109	109	109	109	110	107	118	145	132	120	112	106	103
113	113	113	112	112	113	110	129	160	160	164	162	157	151
118	117	118	123	119	118	112	125	142	134	135	139	139	175
123	121	125	162	166	157	149	153	160	151	150	146	137	168
127	127	125	168	147	117	139	135	126	147	147	149	156	160
133	130	150	179	145	132	160	134	150	150	111	145	126	121
138	134	179	185	141	090	166	117	120	153	111	153	114	126
144	151	188	178	159	154	172	147	159	170	147	185	105	122
152	157	184	183	142	127	141	133	137	141	131	147	144	147
130	147	185	180	139	131	154	121	140	147	107	147	120	128
035	102	194	175	149	140	179	128	146	168	096	163	101	125

An image is a grid of pixels. Each pixel has a numerical value.

For a greyscale image, the value corresponds to the intensity of that pixel.

How does a computer process an image?

097 097	097	097	097	097	097	097	096	097	097	096	096	096
100 100	100	100	100	100	101	101	102	101	100	100	100	099
105 105	105	105	105	105	105	103	102	102	101	103	104	105
109 109	109	109	109	110	107	118	145	132	120	112	106	103
113 113	113	112	112	113	110	129	160	160	164	162	157	151
118 117	118	123	119	118	112	125	142	134	135	139	139	175
123 121	125	162	166	157	149	153	160	151	150	146	137	168
127 127	125	168	147	117	139	135	126	147	147	149	156	160
133 130	150	179	145	132	160	134	150	150	111	145	126	121
138 134	179	185	141	090	166	117	120	153	111	153	114	126
144 151	188	178	159	154	172	147	159	170	147	185	105	122
152 157	184	183	142	127	141	133	137	141	131	147	144	147
130 147	185	180	139	131	154	121	140	147	107	147	120	128
035 102	194	175	149	140	179	128	146	168	096	163	101	125

W

Η

The image has size HxW.

How does a computer process an image?

A color can be represented by 3 values at each pixel: red, green, blue (RGB) A full-color image can be represented by HxWx3 numbers.

We could try to code up a classifier...

Challenges: Viewpoint Variation

Challenges: Viewpoint Variation

Challenges: Variation within Classes

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domai

<u>This image</u> is <u>CC0 1.0</u> public domain

Challenges: Lighting Changes

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0 This image by sare bear is licensed under <u>CC-BY 2.0</u> This image by Tom Thai is license under <u>CC-BY 2.0</u>

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This Image by ionsson is licensed under <u>CC-BY 2.0</u>

Data-Driven Approach

Idea: Use (lots & lots of) data to learn to classify images.

- 1. Get a bunch of labelled data.
- 2. Use Supervised Learning to train a classifier.
- 3. Use the classifier to label new images.

This will take lots and lots of <u>data</u> and <u>compute power</u>.

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Lin **Great Lakes GPU Cluster** \mathbf{O}

Computers have gotten very fast.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

Output: Scale T-shirt Steel drum Drumstick Mud turtle

Deng et al, 2009 Russakovsky et al. IJCV 2015

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: COCO 2020 Object Detection Task

COCO Dataset (link)

Output:

Scale

COCO 2020 Keypoint Detection Task

COCO 2020 Keypoint Detection Task

The MNIST dataset of images

MNIST contains 70k images of handwritten digits. All of them are labelled as a digit from 0 to 9.

The images are 28x28 pixels (tiny!).

Image: CC4.0 (link)

Machine Learning Algorithm

Training time:

Learn a prediction model by optimizing over a labeled dataset.

Testing time:

Use the model to perform prediction on new data.

Machine Learning Algorithm

Training time:

Learn a prediction model by optimizing over a labeled dataset.

Testing time:

Use the model to perform prediction on new data.

We have to pick the data, the model, and the optimization method.

Training & Testing Datasets

Training set: Labelled data used for training a machine learning algorithm.

Test set: Data used to test the accuracy of the machine learning algorithm.

- Usually smaller than the training set
- Also has labels, only used for measuring how good the algorithm is (no cheating!!)
- We don't look at this during training, so we are testing on images the algorithm has never seen before.

In MNIST, there are 60k training images and 10k test images.

Project 4: Machine Learning

Implement three machine learning algorithms to classify images from the MNIST dataset.

- 1. Nearest Neighbors
- 2. Linear Classifier
- 3. Neural Network

Image: CC4.0 (link)

Julia & Jupyter Notebooks

- · · · ·	
intro_to_ju	ia - Jupyter Notebook × +
$\leftarrow \rightarrow G$	🕕 localhost:8889/notebooks/Documents/code/rob102/intro-julia/intro_to_julia.ipynb 🛛 🛠 🕐 😁 😒 🔤 🔅 🎧 🖓 Update
👖 Apps 💽	🛆 📀 💶 📕 🔛 Ň 🛅 🔟 🤹 ඹ 🙆 🖓 6 🔯 🦊 🔯 💭 📶 🕹 M Library 📙 teaching 📙 research 🛛 🔅 » 🗍 🖽 Reading
	CJUPYTEr intro_to_julia Last Checkpoint: Last Friday at 9:12 AM (autosaved)
	File Edit View Insert Cell Kernel Widgets Help Trusted Julia 1.6.1 O
	P + ≫ P + P + P + P + P + P + P + P + P
	Introduction To Julia
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Dython. It also shares a lot of syntax with MATLAB, As we will show it is also easy to install code made by other users of
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Python. It also shares a lot of syntax with MATLAB. As we will show, it is also easy to install code made by other users of Julia known as packages. These packages offer numerous abilities including making beautiful visualizations, performing
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Python. It also shares a lot of syntax with MATLAB. As we will show, it is also easy to install code made by other users of Julia known as packages. These packages offer numerous abilities including making beautiful visualizations, performing intensive math calculations, and creating graphical user interfaces.
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Python. It also shares a lot of syntax with MATLAB. As we will show, it is also easy to install code made by other users of Julia known as packages. These packages offer numerous abilities including making beautiful visualizations, performing intensive math calculations, and creating graphical user interfaces. The following topics will be covered in this intro to Julia notebook:
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Python. It also shares a lot of syntax with MATLAB. As we will show, it is also easy to install code made by other users of Julia known as packages. These packages offer numerous abilities including making beautiful visualizations, performing intensive math calculations, and creating graphical user interfaces. The following topics will be covered in this intro to Julia notebook: 1. Julia Basics
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Python. It also shares a lot of syntax with MATLAB. As we will show, it is also easy to install code made by other users of Julia known as packages. These packages offer numerous abilities including making beautiful visualizations, performing intensive math calculations, and creating graphical user interfaces. The following topics will be covered in this intro to Julia notebook: 1. Julia Basics 2. Vectors and Matrices
	Welcome to using Julia. Julia is a fast general purpose language that has been embraced by the scientific and math community. What makes it so special is that it has the speed of a compiled language like C++, but the flexibility of a language like Python. It also shares a lot of syntax with MATLAB. As we will show, it is also easy to install code made by other users of Julia known as packages. These packages offer numerous abilities including making beautiful visualizations, performing intensive math calculations, and creating graphical user interfaces. The following topics will be covered in this intro to Julia notebook: 1. Julia Basics 2. Vectors and Matrices 3. Functions and Flow Control

1. Julia Basics

Next time...

Implement three machine learning algorithms to classify images from the MNIST dataset.

- **1. Nearest Neighbors** ← Next lecture!
- 2. Linear Classifier
- 3. Neural Network

Image: CC4.0 (<u>link</u>)