Deep Learning \& Matrices in Julia

ROB 102: Introduction to AI \& Programming 2021/12/01

Today...

1. Deep learning image recognition activity
2. Matrix math review
3. Matrix math in Julia

Matrix Math in Julia

Create two square matrices:

Challenge 1: Print row 2 of matrix A and column 2 of matrix B.

Matrix Math in Julia

Create two square matrices:

Challenge 2: Calculate the Euclidean distance between A and B two ways: by looping through the matrix and by using matrix math.

Matrix Multiplication in Julia

What do you expect the output to be?

Matrix Multiplication in Julia

What do you expect the output to be?

main.jl \times		Console Shell
1	$D=5$	
2	$A=\operatorname{rand}(1: 10,(D, D))$	
3	$B=\operatorname{rand}(1: 10,(D, D))$	$\text { B = }[107639 ; 7864 \text { 10; } 9756$
4		1; 92777 7 1019388
5	@show A	A * B = [295 145230148 256; 255120
6	@show B	190137 207; 252108184135 165; 17
7	@show A * B	$011512078139 ; 186116132101157$
8	@show A .* B] 115120 78 139; 186116132101
9		
10		
11		
12		-

Matrix Multiplication in Julia

What do you expect the output to be?

main.jl		Console Shell
1	D $=5$	
2	$A=\operatorname{rand}(1: 10,(D, D))$	$\mathrm{A}=\left[\begin{array}{llllll}5 & 8 & 3 & 8 & 9 & 64310\end{array}\right.$ 5; 41 Q x
3	$B=\operatorname{rand}(1: 10,(D, D))$	$B=[107639 ; 786410 ; 9756$
4		1; 92777 7; 101938 8]
5	@show A	A * B = [295 145230148 256; 255120
6	@show B Matrix	190137 207; 252108184135 165; 17
7	@show A B \% multiplication	$011512078139 ; 186116132101157$
8	@show A .* B	
9		A .* B = [50 56 18 24 81; 42321840
10	Elementwise	50; 36735487 7; 5410287 21; 60
11	multiplication	52718 8]
12		: $]$

Matrix Math in Julia

Create two square matrices:

Challenge 3: Perform matrix multiplication 2 ways: by looping through the rows and columns, and using the matrix multiplication operator.

